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. DIRECTIONAL STABILITY OF TOWED AIRPLANES*l

By W. Sohne
1. STATEMENT OF THE PROBLEM

So far, very careful investigations have been made regarding the
flight properties, in particular the static and dynamic stability, of
engine-propelled aircraft and of untowed gliders. Thereby the mechani-
cal work of airplane control was considerably facilitated for the pilot;
he obtained a certain assurance in case of operating errors, and he was
enabled to 4o blind flying. Furthermore, it became possible for the
airplane designer to predetermine with certainty the stability of an
alrplane he was about to develop, on the basis of theory, and to influ-
ence that stability by constructive measures.

In contrast, almost no investigations exist® regarding the stability
of airplanes towed by a towline. With the freight gliders known in
Germany, a glider train is usually unstable., A towed airplane does not
automatically hold to the flight path behind the towing airplane; on the
contrary, its pilot must continually and carefully observe the towing
airplane and balance path deviations by control deflections. Evidence
for the imperfect stablility of a glider train is also provided by the
fact that blind towed flight of long duration is impossible. If the

*"Die Seitenstabilitit eines geschleppten Flugzeuges." Deutsches
Ingenieur-Archiv, vol. 21, no. 4, 1953, pp. 245-265. Extract from the
dissertation of the author (Braunschweig 1947). Principal reviewer:
Prof. Dr. H. Schlichting; coreviewer: Prof. Dr. H. Blenk.

lps a pilot of freight gliders in the second world war, the author
was able to collect detailed flight experiences which stimulated him to
undertake the theoretical investigations here described. They were per-
formed after the end of the war, with the permission of the British
Ministry of Supply, in collaboration with the Institut fur Strimungs -
mechanlk der Technischen Hochschule Braunschweig.

ZThe only report to which the author had access, by H. Solf (Die
Seitenstabilitédt eines geschleppten Flugzeuges, FB-Bericht 1306, 1940),
considered the directional stability of an airplane, the towing point
of which was assumed to lie in a vertical straight line through the cen-
ter of gravity, and the yawing oscillations of which were neglected.

The results seem therefore not sufficiently applicable for the purposes
of practice.
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towing airplane is lost sight of, the pilot of the towed airplane is
forced usually after a few seconds to release the towline. ZEven brief
temporary inattentiveness may lead to badly disturbed flight positions.
In flight with undisturbed view and in calm alr, corrections for dis-
turbances are performed partially intuitively and the pilot of the towed
airplane becomes hardly conscious of them. In the case of squally
weather, however, a high degree of attentiveness 1s necessary; for
freight gliders, in addition, tiring manipulation of the controls is
required.

The disturbed motions occur in the following two forms:

1. As a longitudinal oscillation (periodic deviations of the flight
path upward and downward). It can be observed if the pilots of gliders
and freight gliders are inexperienced, and is, in part, caused by too
violent elevator deflections. An experienced pilot has no difficulties
in eliminating these disturbed motions, except in blind flight or in
low-speed flight with far-rearward position of the center of gravity.

2. As a self-exclited lateral displacement oscillation which is
coupled with a rolling and yawing motion. This lateral displacement
oscillation appears particularly pronounced in freight gliders in the
case of high wing loading. It considerably impedes the work of the
pilot and may cause the towline to break, or force its release in
special flight attitudes, for instance, in low-speed or in climbing
flight.

Thus, the following report will aim at investigating the directional
stability of the towed airplane and, particularly, at determining what
parameters of the flight attitude and what configuration properties
affect the stability. The most important parameters of the flight atti-
tude are the dynamic pressure, the aerodynamic coefficients of the
flight attitude, and the climbing angle. Among the configuration prop-
erties, the following exert the greatest influence on the stability:
the tow-cable length, the tow-cable attachment point, the ratio of the
wing loadings of the towing and the towed airplanes, the moments of
inertia, and the wing dihedral of the towed airplane (which is a deci-
give factor in determining CZB)' In addition, the size and shape of

the towed airplane vertical tail, the vertical-tail length, and the
fuselage configuration are decisive factors in determining Cng and Cyp>

the yawing moment and side force due to sideslip, respectively.

For an untowed airplane, the longitudinal and directional stability
cannot be pushed so far that the airplane automatically holds to a cer-
tain flight altitude and to a certain course; likewise, a towed airplane
can hardly be required to hold automatically to the flight path behind
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the towing airplane, especially for the changing conditions of take-off,
climbing and cruising flight. Rather, one must strive to relieve the
pilot of the towed airplane as much as possible of the work of control.
. For.blind flying, one must attempt to make orientation by the direction
of the, towline possible - unless an instrument can be developed which
would show the position of the towed airplane with respect to the towing
airplane from cable direction and cable tension.

2. INFLUENCE OF TOWED FLIGHT ON TOWING ATRPLANE

AND FREIGHT GLIDER ON THE BASIS OF FLIGHT EXPERIENCES

The effect of the towing connection on the towing airplane 1s entirely
different from the effect on the towed airplane. The towing airplane is
more stable in towed than in untowed flight. It can fly more slowly, its
control effectiveness is of longer duration, and disturbances are damped
more rapidly. Consider, for comparison, a kite. The kite is stabilized
by the drag and the mass of its long tail. The effect of a controlled
towed airplane on the towlng airplane is similar.

In contrast to the towing airplane, the towed airplane becomes
unstable in towed flight. Calculation and flight experiences, in accord-
ance, show that this instability increases with increasing 1ift coeffi-
cient, increasing wing loading, and increasing climbing angle. The ratio
of the wing loadings, thus the ratio of the mutual 1ift coefficients,
play therein an important role. TFor reasons of efficiency, it would be
desirable that both airplanes fly at 1lift coefficients corresponding to
their optimum glide ratios. For obtaining equal behavior in the case of
squally weatherj, it would be desirable, in contrast, that the 1lift coef-
ficients should be about equal. The experiences of practical flight
operation, however, showed as the most favorable ratio of wing loadings
of the towing airplane and of the towed airplane, with consideration of
the flight properties in towed flight, approximately the value 1.6. For
this ratio of wing loadings, the pilot of the towing airplane - in order
to maintain soaring ability himself - must always fly so fast that the
1ift coefficient of the towed airplane does not exceed the value 0.8.

The pilot of the towed airplane does not attain a flight attitude with

higher Cy values where the control effectiveness is no longer sufficient

for compensating the lateral displacement oscillation and the rolling and
yawing motion connected with it. The desire for a low landing speed and

3Tf the wing loading of a towing airplane is three times as high as
that of an empty towed airplane and the two c¢, values in cruising flight
are 0.75 and 0.25, a vertical gust of 6.6 m/sec at 190 km/hr causes a modi-
fication of the lift coefficient Acg of 0.54 or 0.6 so that there results

for the towing airplane a load factor in the gust of 1.72; for the towed
airplane, in ‘contrast, one of 3.2.
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for a possibility of landing outside of airfields likewise leads to a
lower wing loading of the towed airplane.

The pilot of the towing airplane has only a slight influence on the
flight+path correction of the towed airplane. He must only observe a few
fixed rules; he must, for instance, stay above the permissible minimum
speed, the permissible minimum curve radius, and the permissible gliding
angle at low speed. At higher cg, values, the towed alrplane has a more

favorable gliding angle than the towing airplane and may in a given case,
if the engines are throttled, even overtake the towing airplane.

3. SETTING UP OF THE EQUATION OF MOTION

(a) Symbols

Beside the coordinate systems defined in DIN L 100, namely, the
system fixed in aircraft (xf, Ygs zf), the system fixed relative to

the flight path (x,, ¥g» za) and the system fixed relative to the

earth (x,, ¥ Zz,), in this report the experimental system (x, ¥y z
g g’ g ’ ’

is used prominently. This system may be interpreted as a combination
of the system fixed in aircraft and the system fixed relative to the
flight path (fig. 1).

Furthermore, G denotes the weight of the airplane, F the wing
area, b =2s the span, i, iy, i, the radii of gyration, h the

vertical distance between the towing point and the center of gravity
(fig. 5), a the horizontal distance between the towing point and the
center of gravity, 1 the length of the towline, and kg = Z/s the

relative cable length.

As aerodynamic quantities, V signifies the undisturbed flight

speed, vy the component of the disturbed speed in y-direction, Wy »

gy’ w, the angular-velocity disturbances in the experimental system,

o the angle of attack, B +the angle of sideslip, 9 +the flight-path
angle (y > O climbing flight).

The following is generally valid: Motions are positive with the

axes. Moments and forces are positive with the axes, except for Cyr

and c,. These two are positive against the axes.

In the following table, we compile the form coefficients and moment
coefficients known from H. Scholz and F. Wenk.lt

hH. Scholz and F. Wenk, Jahrbuch 1941 der deutschen Luftfahrtfor-
schung, p. I 159.
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Lift

Lateral force due
to sideslip

Lateral force due
to yawing

Lateral force due
to rolling

Yawing moment due
to sideslip

Lateral damping

Yawing moment due
to rolling

Rolling moment due
to sideslip

Rolling moment due
to yawing

Demping in roll

Cable force

Cable rolling
moment

Cable yawing
moment

Aerodynamic form coefficients Moment
of directional stability © coefficlents
Ca
ch
a8 T 55
acq
Cq, = -
b _Bswha/V
bcq
Cax =
< Bsa&a/V
dc 2
_ N _ (8
an —-% nB = (1—2-‘-> an
Cnz = - “n n, = (£ 2cnz
Bswha/V i
dc 2
N - (8
=- = [=2\¢
cnx aS v nx i nx
Dya, P2
de \2
= __"L = {8
clB - aB ZB <ix czB
de 2
L _ /s
ey, = - 1, ={—\¢c
lz aswza/v 2 (ix) lz
de 2
L s
c = - 1o = |2 ¢
x BSQxa/V X <ix) x
Aerodynamic form coefficients Cable moment

of cable force and cable moments coefficients

Cg = ¢, + Cy tan o

— hcos a+asina
C1s = Cg

8
—— C

s s ls
ix

— .~ =h sin a + a cos a _{s\2
Cns = Cg 3 Bg =13} Cns
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(b) General Course of a Lateral Motion

Assume a glider train flying steadily straight ahead. Due to a dis-
turbance, the towed airplane gets into a position with respect to the
towing airplane which would be characterized by the following angles
(figs. 1 and 4): o angle between the undisturbed flight direction of the
towing airplane and the towline, X angle between the projection of the

X -axis of the towed airplane onto the xgygfplane against the-xg-axis,

B 'sideslip angle of the towed airplane against its flight path, pu rela-
tive wind-bank angle. The angle between the flight direction of the
towing airplane and the x-axis of the towed airplane is we =X tan ¥ + B.

There originates an excited lateral displacement oscillation with the
following relative motions with respect to the towing airplane: lateral
motion vy of the center of gravity of the towed airplane in y direc-
tion, rolling motion @, about the experimental longitudinal axis,
yawing motion , about the experimental vertical axis. These relative

motions cause the following aerodynamic forces and moments, already known
from the theory of directional stability of the untowed airplane:

lLateral force due to sideslip YB’ lateral.force due to yawing Yﬁm’
lateral force due to rolling Yox

Yawing moment due to sideslip NB’ lateral damping Nwz’ yawing
moment due to rolling Nysx

Rolling moment due to sideslip LB’ rolling moment due to

yawing L damping in roll Lo

wz’

In addition, there are the forces and moments stemming from the cable
force:

Lateral cable force Yy, cable yawing moment Ng, cable rolling
moment LS

The lateral motion of the untowed airplane is known to be charac-
terized by the four roots of the frequency equation, namely, by the real
damping-in-roll root A; which determines the quickly damped aperiodic

rolling motion, a conjugate-complex pair of roots *25 = Usz t iw25
which determines the generally damped yawing oscillation (u25 damping
factor, w25 frequency factor), and the real spiral root Ay which

determines the generally very slow aperiodic spiral motion which may be
negative, that is, stable, or positive, that is, unstable.
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The lateral motion of the towed airplane, in contrast, is charac-
terized by six roots.? It is characterized, as in the case of the untowed
airplane, by the damping-in-roll root A1 end the pair of yawing-

oscillation roots Aoz =-Up3 i-iw23. In addition, one has here a further
conjugate~-complex pair of roots K45 = Ws t iwu5 which characterizes

the lateral center-of-gravity displacement oscillation and is almost
always strongly excited (fig. 3), and a real root %6 which determines

the static directional stability in towed flight.
In what follows, we consider mainly the lateral displacement oscil-
lation and the static stability in towed flight.
(c) Assumptions for Setting Up the Equations of Motion

For simplification of the calculation, the following assumptions
are made: .

1. Since it is only to be investigated whether the disturbed motions

. are stable, indifferent or unstable, it suffices to assume the disturb-

ances to be small and thus to put cos p=~1, sinp=p, cos B ~1,
sin B = B.

2. As in other stability considerations, one may investigate longi-
tudinal and directional stebility separately, on the basis of flight
experiences for small disturbed motions, also in the case of the towed
airplane.

3. The behavior of the alrplane with fixed control surfaces is
investigated.

k., It is assumed that the towing airplane holds to the flight path
undisturbed by the lateral motion of the towed airplane. For the pilot
of the towing plane, even slight rotations about the vertical axis
caused by the cable tension are clearly noticeable; he counteracts them
almost automatically by hand, or they are corrected by the automatic
pilot. Since, furthermore, mass and moments of inertia of the towing
airplane are considerably larger than those of the towed airplane, this
assumption is realized with good approximation.

5. Finally, it 1s assumed that the moment coefficients increase
linearily with the rotational speeds o, and o, and the lateral

motion vy this assumption is quite customary in directional-stability
theory and has proved to be permissible. T '

5This result of the following investigations is anticipated for the
sake of better understanding.
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(8) Setting Up of the Differential Equations
of the Lateral Motion

The general equations of motion for the towed airplane state that
the vectorial sum of aerodynamic and cable forces equals the forces of
inertia and that the sum of aerodynamic and cable moments equals the
angular-acceleration moments. For the investigation of the lateral
motion, it suffices to consider the balances of moments about the x-axis
and the z-axis, and the equilibrium of forces in the y-axis. In the
following formulation of the differential equations, the acceleration
terms and the terms of the aerodynamic forces and moments in the form
given by H. Scholz and F. Wenk6 are used.

1. The lateral-force equation.- The mass acceleration is
(¢/g)¥ cos 7. The aerodynamic lateral force equals
Ay + YB + Yy + Yy After introduction of the aerodynamic form

coefficients this expression reads

SWxq Sz g
Rya air = qF[;au + chB + —?7—cqx + “?;—qu

or, because of w,, = @y, W = @ - Oyf

s Sy s,
Rya air = q-FIE:B.“ * B<CQB - —%zéqx> + —;—cqx + —;—cq;] (1)

In addition, one has a cable lateral force. Due to its lateral motion,
the towed airplane travels longer distances than the towing airplane which
is assumed to fly steadily straight ahead. Thereby, velocity differences
and mass accelerations originate which find expression in variable cable
forces. In order to determine variation and order of magnitude of the
velocity differences and accelerations, these quantities were investigated
for an oscillation obtained by flying. The result of this investigation
permits considering the speed of the towed airplane as constant. Taking

a climbing or descending angle ¢y into consideration, one then finds the
cable force to be

aF(c, + c, tan 7)
g - W+ Atany cos pu = Cw a cos 4

cos(o - X cos v) cos(o - X cos 7)

After introduction of the cable-force coefficient c¢g = ¢, + ¢y tan y
and because of cos p =1, S is

65ee footnote U on p. 4.
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Fe
S = qFcg . (2)
cos(o - X cos 7)

~and the sideward cable-force component is

Syg = 8 sin (6 - X cos 7) = qFc tan (o - X cos 7) (3)

Thus the lateral-force equation reads

g k%Y= qFléa“ * B(cqﬁ : ';"CQX) toy Cax 5l Y
cg tan(o - X cos 7ﬂ (4)

In this equation, the variables X, p, B, ay, ®,, and ¢ occur.
The influence of wy 1s very slight. The quantities wy, wy;, and

the velocity vyg
differential equation. Thus the variables X, p, B, and o are to
be eliminated. For this purpose, there exist the following
relationships:

in yg-direction are chosen as variables of the

->.<. cos ¥ = w, - [.3 yg = \‘fyg = V').(_ cos 7y = V((nz - é)
V. v
y yg 3 Jg
X cOos Yy = B = -
v %2 A

Q - X sin 7 + X cos y sin 4 sin B8 = w,
o= o, + X cos y(ten y - sin u sin B) ~ a, + X cos ¥ tan y
.
H=a + —%5 tan y

Furthermore, there is (fig. 4)
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-yg=7,sin0+asin (x cos 7 + B)

Q
]

arc sin [—Zf- - f;i sin (X cos 7 + B)}

tan (o - X cos 7)

y
tan <arc sin [—+g -2 sin (X cos 7 + B)] - X cos ¥y
1 1

(5)

For this, one may put with good approximation

y
tan(G-Xcos’)’)=-Tg+XCOS7(l+%)+B%j|
and thus
V. v
a ye J& a
—Itan (o0 - X cos = o2 === 6
dt[ ( 7] <z v “’zl> (6)

One eliminates the quantities X, u, B, and o Dby differen‘biéting
first the lateral-force equation (4). Thus one obtains

v. V. :
G yg yg S S
gaF Ve " ca<a>x oy 7) N < - '_> G’qﬁ - %CqX> * B_(\;)chx *

gqfF \'
St S® V. V.
x Z _ Je Jg a
v cax t 7 Cqz Cs( 7 Ty T le) (7)

Therein the term with u)y is negligible.

In equation (7), the directional-stability parameters, flight-
mechanical time unit Ty = 2G/ng’F and relative airplane mass

density Mg = 2G/gpsF, are introduced, and s/ V and l/V are eliminated
by means of the following relationships:
Ty

A
= — k ==
MS S S

1 _ Trks
v Mg

<ijw
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Then the equation (7) is rearranged according to the variables @, o
and v__, and reads finally

2

e
C. 2 - c - W, Chy— - Cc2 ) - dC - WyCq +
~P2Cqz, “‘Z< a8 ~ Dytax 57 | 7 “xCax - - “%Ca

¥ Vg T v
Yep  + TE[c c, tan F Y&, HMs _
- == - Y+ C, - BC 2 |+ 28 B _ -0 (8)
v F v (cuS a s aﬁ'qxus _ v STFks

2. The moment equations.- Rotary motions about the coordinate
axes are determined, for the untowed airplane, by Euler's equations for
rigid bodies. For the towed alrplane there occurs, in addition, a
coupling of the rotary motions with the lateral motion of the airplane
center of gravity due to the cable lateral force and its moments. Since
Euler's equations are here referred not to the main inertia system but
to the experimental system, they do not appear in the simple form known
but in a general form, with the left sidesT’

it

Ux de)‘x + (Jz - x) 1:&1; 2(1{1] — (Dy[_ak(Jz - Jx) t;u..;_a_a' + a)Z(Jy - Jz)J

[
]

— . t . I _ tan 2a
2 = Ty + (T - Jy) _g%;ggwx - ﬂ&lfwx(Jx - Jy) + ay (T = JTy) - ]
(9)
Therein Jy, Jy, J, signify the moments of inertia about the experi-

mental axes. Expressed by the main inertia moments, one obtains
because of y= y¢

\
- 2 2 =
Jk = fo cos< a + sz sin® « Jy._ Jyf
JZ = ka sin® a + sz cos? o > (10)
tan 2q _ - _ sin 2q
(Jx - Jz) B sz N (fo sz)‘

TH. Scholz, Jahrbuch 1940 der deutschen Luftfahrtforschung, p. I 433.
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The aerodynamic force moments L about the x-axis and N about the
z-axis are composed of contributions stemming from the motions of side-
slip, rolling, and yawing. They read, with use of the aerodynamic coef-
ficients of these motions

_ 5@xa SWza.,

Syq, S%%a,
v I'.I.X+ v nz

N = -gFs [Ban + —==c

or, because of a,, =@, and wy, = ®, COs B - Wy sin B = @y, - wyB

— —y

v v lz

s s 5
L = -gFs B(cw - cle> + &clx + _“Zc
' S (11)

=2
il

[ s,
- - Cpy +____c 20
qFs B(nB ) - nx * nz

With the cable force (2) the lateral component of the cable force,
referred to the experimental y-axis, becomes (fig. 4)

sin (o - X cos y - B)
cos (0 - X cos )

Sy = 8 sin (6 - X cos 7 - B) = aFcy

For the cable rolling moment and cable yawing moment (fig. 5), there
results therefore

sin (o - X cos y - B)
cos (o - X cos 7)

Legple = +aFcghe

sin (o - X cos y - B)

N
X cos )

1]

+gfc_a
cable e Log (0

Instead of using the quantities hg, and ag, referred to the experi-

mental system, the quantities may be referred to the system fixed in
aircraft h and a with the transformation
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~h, =hcos a+ asina 8¢ = - h sin o + a cos a
_and also ‘the aerodyna.mic form coefflcients of the cable moments Cyg
and Cpg are introduced Then the cable—moment equatlons read
sin (0 - X cos y - B)
L = +gFsc
cable s (os (o - X cos 7)
(12)
sin (0 - X cos y - B
Neable = +dFscpg )
- cos (o - X cos ¥)
With (9), (11), and (12), Euler's equations now read
. tan 2q- tan 2a
Ty + (I - Jx)—ewz - “’y[’“’x(‘jz - Jx)_z—— + ‘Dz(Jy - Jz)]
s s s
-aFs|pB 15 - Cyx Yy + wx"?,x + wz"lz - clsSin (o0 - X cos 7 - B)
i v \' \' cos (o - X cos )
> (13)
. tan 2q- tan 2o
Tptg, + (I = Jy) - "-’y[E”x(Jx - y) + ay(Jy - Jy) " ] =
o\ s . . o)
camsofeng - enn ) D ko s (o s Koo 7 )
A A\ s cos (o - X cos ¥)
In these equations the directional-~stability parameters Tp and Mg
are introduced as follows:
\
. 2 2 2 2
Ix _ 26y = x §=_..._TF i_x
aFs gpVeFs F\s/ Vv pug\s
| ’ (14)
Tz _ E(.i_f
qFs Hg\S
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Furthermore, the equations (13) are multiplied by pg = TF-Y and
’ 8

. \2 . . \2
i i

divided by (i‘-) and (—Z) , respectively. They then assume the form
S.

N\

. i \2 i \e
2 z tan 2 2 tan 2 2
a)xTF + <—i ) -1 ‘ITF u)z - Wy 4 - <_i > -1 __E_QTF +
b4 b4

2 2 2
y Zp 24 T - s s

2
s sin (0 - X cos y - B)
®,TgCy (=1 - HKgCys
z F lZ<1x> 5 <i ) cos (o - X cos y)

> (15)

B 2
i Jy - d.
_ [Zx\ |tan 2aq 25 _ X Yp 2
1 < ) 5 F By = DBy 3, Tp

1,\2 ] 2
o (e gl el
z Z Z

2 2 \251n (0 - Xcos 7 - B)
Tee o[- + oToe () - u 4
Wty n.x(i ) A nz(iz> s ns(iz) cos (0 - X cos 7)

Z

/

One simplifies these equations by introducing the moment coefficients
and the influence factors of form and position of the ellipse of inertia

i \2 i.\2
ky, = |(=2) - 1|tan 2a ,{n=1__X>tan_2a o= ol
1, 2 1, 2 @1 - kK,
(16)

then one differentiates them in order to be able to eliminate the
expressions B, X, and o. Because of the value ¢ (5) the expres-
sion at the right in (15) becomes
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sin(o-xcosy-B)___
cos (o - X cos ¥)

sin <arc sin.[ %5 - sin (X cos.7+mﬁ)§]¥-x cos y - B

cos sarc sin [-Zﬂ - sin (X cos y + 3)%].-x cos 7y
1 1 .

For this equation one may write with close approximation

_ _ Y
sin (o - X cos 7 B)=‘_§+(xcosy+ﬂ)l+i
cos (o - X cos v) i L

With o, = X cos 7 + é there results finally for the differentiated

quotient

- _ v
4 Jsin (o - X cos y - B) __Vye _ a, (1 + a
dt cos (o - X cos 7) 1

After elimination of the quantities é, X, and o and introduction of
the expression V/l = uSTFkS, the differentiated equations (15) are

rearranged and read finally

L Jy - J.
B2 + u'&TF('Lx + u)ynzTF) + e T2 & szp<lz - y—J-E“&TF> + I}Bus = LoyTe + lgng (1 + %)] -
x =

¥, Vo lalin2 Jy - 7
sHs . Yy z _
%I;B“s - lx“’arTFJ + ng * 1%TF [E&KZTF B mxhl =0

¢ 7

. . . . dx - J
%TFE + ‘”zTF<nz - uytnTF) + %[L\Bus + nxwyTF + Ngpg (1 + %)] + a&anFg + BTy <nx - %TF) -
z

"ys“s“az
VIpkg

BT e T - oo X = T =0
+ 0y TR |aF pTp - ay 7 F oy

%Eﬂnﬁ - nx“’yTF] +
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The braces in (17) are, because of the factor &&’ almost equal zero and

are neglected later on.

In addition to the mass and angular acceleration terms (v ye’ Wy 5 d&)

and the aerodynamic forces and moments Q”vyg’ Wy » wz) of the differential

equations of the untowed airplane, one has for the towed airplane the
cable forces and moments (~yg>.

5. Simplification of the differential equations and dimensionless
representation of their variables.- The differential equations of the
lateral motion contain & number of smaller quantities with Wy and éy

which, generally, may be neglected. Furthermore it is useful to repre-
sent the variables w,, ,, and Vyg in the following - dimensionless -

manner
Ty = P w,Tp =T (vyglv>“s - v
Rt A (‘.}yslv)“sTF =V
“TF =P &SzTFB = (R}yg/ V)MSTFQ =V

Neglecting the correction factors and using a dimensionless representa-
tion of the variables, one expands the three differential equations (8),
(17), and the lateral-force equation, by Tp, and the last one, moreover,

by Hgs they then read

.e . . . E _ - EE.:
P + plx + KT + rlz + r“s{}s + ls<l + zﬂ sz + vlsks 0

KD + Doy + T + Tn, + r“S[%B + ns(l + %)} - img + vnsiﬁ =0
S
: (18)

-Peqx - PCahg - TCqp - Thg (ch - CS%> vy

ﬁ(ch - cg tan y + cs) + VCSE§ =0
. s J
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(e) The Frequency Equation
With the statement '

o =C oM/TR _ Crext/TF v =‘Cve)t/TF

one obtains from (18) the following characteristic equation in the form
of a determinant: _

Hg
2 a _ s
N N, Wiy + Mg + g [7,,3 + 15(1 + T):{ Mg+ s
Nk 2+ A+ n, + n(1+ 2 o, + n B =0 (19)
n+ Aoy 7zt Hglfg ¥ Ug 1 ) sk,
Ae c “Ac,, - e - Cum M4+ nfe  -c, 6 tany+c s o B
-Nax - Cabs qz ~ Me\%4B 57 aB a s Sks

Computation of the determinant yields the following frequency equation
of the sixth degree:

on6 + AN+ Azx“ + A5x5 + AN+ AN 0 (20)

This frequency equation is two degrees higher than that of the untowed
airplane.

The coefficients read, after one has multiplied them by
Ky, = 1/(1 - s;k,), in order to be able to put
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A =1:
Alzna[lx-rnznxd»nz«r-nnlz]-fcqp-cltux7+cs

Ay = xa(l,glz - nxlz + (cqﬁ - cg tan 7 + c_s)(zx - fng + 0, - nnlz) - cqz(nﬁ - "nla) -

Cax (lp - "LnB) + bg (nﬁ - "nzp) + g (l + %)(ng - Knls)} + cat—:

A = "a{(cqp - q %40 7+ ) (Lay - nelyg) + g (1 - xl) - Sz (i - Rele) - Cax (iR - nglz) =

LA™ (7'5 - nlnﬂ) - ¢, tan 7'|1K(nB - KnlB) + us(l + %) [(ch - cp tan y + cs) (ns - nnls) + LAy -

nxls + cg (na - nnlB)il + :—: l:(ns - nnls) cqz + (’Ls - "1“5) ?qx] + c;:s (Zx - KR, + D, - nnlz)}

Ay = "u.“s{"a(“szz - lﬂnz) + E:_s(l + %) ~ Cg tan 7](1151,‘ - Zan) +

(cqja - ¢y tan ¥ 4 cs) 1+ l;'-) ('ans - x&ls) - °qx(l + -:-) (7.BnB - npls) + :—:—:(zxnz - nx:l'z) +
¢

> (21)

:Ei(’l,snz - ns'l.z) + —1-‘9-5(7.,315 - nxls) + ;—:—l::e(na - Knls) + (cq_‘a + cs)(ns - xnls) + ca(ls - "lnsﬂ}

A5 = xauaz{.kls_ I:(cqp + cs) (ans - nxls) + cs(’l.xn‘3 - %lﬁ) + cqx(lsns - nalﬁ) - ca<7'zns - nzls):, +
ca(lsnﬂ - nslp) (l + %)}

Ca .3
Ag = n@“ﬂjzé + ;)(zsnﬂ - nslp)

The terms not underlined yield the coefficients of the frequency equa-
tion of the untowed airplane. In addition, one has for the frequency
equations of the towed airplane the underlined terms which stem from
the cable forces and moments. The influence factors of the ellipse of
inertia Kys Kp are generally so small that they may be neglected.

(See table I.)

(f) Stability Conditions of the Frequency Equation

For stability considerations, a numerical calculation of the indi-
vidual roots is frequently not necessary; it suffices to determine the
limits within which stability exists. The directional stability of a
towed airplane is given, if all roots of the frequency equation have a
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negative real part. For this, the condition® is valid that all coeffi-
cients and the following determinants (for the equation of the sixth
degree) must be positive:

. a0
| 1 I
D=f Dyl N Dy = A5 Ay A

’ RS

b hg 00 0L

A 0 0
Al : N As Ay A Ay O
D)_*_ = 3 1 D5 = A5 A}_‘_ A3 Ae Al
A5 om Ay |
0 Ag A5 Ay A3
0 Ag A5 A),

In the case of instability of the lateral displacement oscillation, only
the determinant D5 is negative. It must therefore become positive so

that stabllity may be attained. If the determinant D5 is computed,
there results

A2 Das{he - as/m) - )
Ay MMy - Ag - Agh, +A3/A

A5A6 - A5A)+ +

Therein A;4) - A5 is small (about 1.5 percent) compared to

—A3A2 + A32/Al. If the second-degree term in the numerator of this
expression is expanded, the term A12A62 is likewise small compared

to the preceding terms (1.5 percent). If the small terms are neg-
lected after expansion, there results as the condition for stability of
the lateral displacement oscillation

AsPhg - Ashyhs + Aphs? - oMAsAs 20 (23)

8H. Bilharz, Zeitschrift fur angewandte Mathematik und Mechanik 21,
1941, p. 96. i
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An explicit representation and general discussion of this equation with
use of the expressions for the individual coefficients is not possible.
However, if one wants to determine the stability limits for two variables,

for instance, kg or c, against ZB, one obtains - since the individual

coefficlents contain linear terms with ZB - a cubic equation from which

one can calculate for every c¢_ .and kS the pertalning ZB.

a

The stability condition for static stability reads

\
o

%6 = ot/ ks )oa (1o0g - molg) 2

Consequently,

ISnB - nsZB >0

If one replaces the moment coefficients by the aerodynamic form coeffi-
cients and factors out various constant terms, this equation reads

Cns(% + tan a.) - cw<—% tan o + l) 20 (2k)

If the towing point is located in the nose on a horizontal in front of
the center of gravity (he =0, ag> o), there must be :

- = >
c +80L/66 £ 0

g

This condition is to be fulfilled by a suitable dihedral. If the towing
point is located above the center of gravity (ae =0, hg > O), there

must be

Chp = -Soy /53 20

This condition is satisfied in the case of directional stability of the
airplane. If the towing point lies at the center of gravity, static
indifference results.
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(g) Special Cases

Since the work involved for the determination of the coefficients
and for solution of the frequency equation of the sixth degree is very
’high, we investigated to see whether a few special cases with-a lower
number of degrees of freedom could not serve as approximate solutions.

In the calculation of the motion of the center of giavity of a
towed airplane without consideration of the rolling and yawing motion
(one degree of freedom), thus for wy = w, = O, there results a quadratic

frequency equation, the conjugate-complex pair of roots of which charac—
terizes the lateral displacement oscillation.

In the calculation of the center of gravity and rolling motion of
a towed sirplane without consideration of the yawing motion (two‘degrees
of freedom), thus for w, = O, there results a frequency equation of the

fourth degree, the real roots of which characterize the damping in roll
and static stability in towed flight, and the conjugate-complex pair of
roots of which characterizes the latersl displacement oscillation9.

In the calculation of the center of gravity and yawing motion of a
towed airplane without consideration of the rolling motion (two degrees
of freedom), thus for wy = O, there results a frequency equation of the

fourth degree, the conjugate-complex pairs of roots of which characterize
the yawing oscillation and the lateral displacement oscillation.

In the calculation of the rolling and center-of-gravity motion of a
towed airplane where the yawing motion is rigidly coupled with the center-
of -gravity motion (two degrees of freedom), there results a frequency
equation of the fourth degree, the real roots of which characterize the
damping in roll and static stability and the conjugate-complex pair of
roots of which characterizes the lateral displacement oscillation.

A nmumerical comparison of the roots of the special cases with those
of the general frequency equation showed that the lateral displacement
oscillation and the static stability were not reproduced even approxi-
mately correctly in a single case. .The influence of the yawing motion
as well as of the rolling motion on the entire directional stability is
so great that none of those two may be neglected, without completely
falsifying the results. Thus no approximate solutions may be found in
this menner, and it remains necessary to seek the solution of the complete
frequency equation of the sixth degree with all stated degrees of freedom.

9This case 1is identical with the calculation performed by Solf (see
‘footnote 2, p. 1) where coupling in a vertical straight line through the
center of gravity was assumed and the yawing oscillation had been
neglected.




22 NACA ™ 1401

4., DETERMINATION OF THE AERODYNAMIC AND

CABLE FORCES AND MOMENTS

The determination of the coefficients of the individual aerodynemic
forces and moments is an important and difficult part of the calculation
of directional stability. The coefficients dependent on the angle of
sideslip, lateral force due to sideslip ch, rolling moment due to side-

slip clB’ and the directional stability Cnpg, are obtained by six-

component measurements in the wind tunnel. The influence of modifications
of the wing shape and of the dihedral, of shape and length of the fuselage
and of the vertical-tail surfaces area, however, can be expressed numeri-

cally in a simple form.10 The coefficients dependent on the rolling and-

yawing angular velocity, yawing moment due to rolling c,,, damping in

roll Cix’ lateral damping Chzs and rolling moment due to yawing Cin

have, so far, been obtained almost exclusively by calculation.ll The

coefficients of the lateral force due to rolling cqx and of the lat-

eral force due to yawing Cqz are very small and are neglected below,

as having insignificant effect on the results of the calculations. The
cable-force and cable-moment coefficients may be obtained numerically

in s simple form. The cable lateral force Cq is a function of the

aerodynamic efficiency and of the angle of climb of the towed airplane.
The cable yawing moment cps and the cable rolling moment C,s are,

moreover, dependent on the geometrical position of the towing point with
respect to the center of gravity (fig. 5). In the case of the towing
point lying in the nose the cable yawing moment is the decisive factor.

lOH. Scharn, Systematisch-kritische Beispielrechnungen zur Selten-
stabilitdt des Flugzeuges, Zentrale fur wissenschaftliches Bericht-
swesen, UM-Bericht No. 2032, 1943; H. Schlichting, Aerodynamik der
gegenseitigen Beeinflussung der Flugzeugteile, Monographie des M. O. S. (a),
V8lkenrode, Reports and Translation No. 171 (176). Bericht 46/5 des
Instituts flr Strémungsmechanik der Technischen Hoschschule Braunschweig.

11, Mathias, Z. Flugt. Motorluftsch., 23, (1932), p. 224; H. Hemn
and H. Weiler, Untersuchung liber die Seitenbewegung von Flugzeugen,
Vorabdruck zum Jahrbuch 1943 der deutschen Luftfahrtforschung,
Technische Berichte 11 (1944), No. 3.
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5. SOLUTION OF THE FREQUENCY EQUATION

In view of the complicated structure of the general frequency equa-
tion it is Aifficult to meke statements regarding the roots of the fre-
quency equation, and thus on the lateral motion of the towed airplane,
from the coefficlents or from the aerodynsmic and cable force parameters.
One must therefore completely calculate numerous systematic examples in
order to recognize the influence of a few variables of the flight atti-
tude and of configuration parameters on the directional stability. TFirst

Gria'.ffe's_methodl2 was used for the numerical solution of the frequency

equation. This method permits calculation of the roots with arbitrary
accuracy. However, it is laborious and does not offer a possibility of
error control in the course of the calculation. For this reason approxi-
mate solutions for determination of individual roots were looked for.

(a) Approximate Solutions for the Roots
of the Frequency Equation

The numerical calculations were based on the aerodynamic and con-
figuration data of the freight glider Go oho (fig. 6). The coefficients
and roots of the frequency equation are, for this airplane, for a flying
weight of 5,500 kg, a lift coefficient c, = 0.4%6, and a relative cable

a

length kg = 6, of the following magnitudes: A, = 18.7, A, = 52.4,

Az = 316.1, Ay = 2k.8, Ag = ™.T, Ag = 40.0, damping-in-roll

root N\ = -16.7, yawing oscillation Aoz = -1.0 t 4.2i, lateral dis-
placement oscillation Xu5 = +0.17 £ 0.56i, static stability N = -0.37.

For other flying weights, 1lift coefficlents, and cable lengths, too, as
also for other model types, the orders of magnitude of the individual

roots show proportions similar to those of the example mentioned. Thus
they are, except for the small difference between %k5 and K6, numeri -

cally very different. Hence it follows that the large roots N, and
X23 are determined mainly by the coefficients A; to A3 whereas the
small roots kus and X6,'in contrast, are determined by the coeffi-
cients A3 to A6 of the frequency equation. For the approximate

solutions one makes use of this fact by breaking the frequency equation
of the sixth degree (20) down into two cubic equations:

12p. A. Willers, Methoden der praktischen Analysis.
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N+ AN 4 AN + Az (25)

it
o

A :
); + —E%? + 52% + ﬂé

(26)
Az Az Az

1]
o

From the-first cubic equation (25) one calculates the large damping-in-
roll root xl and the pair of roots of the yawing oscillation X25,

from the second cubic equation (26) the pair of roots of the lateral
displacement oscillation- A45 and the small static-stability root Ag.

A first approximate solution for N is obtained from (26) with

the aid of a monogram; it is improved according to Horner's scheme.
(Since the roots KkS and Ng are of the same order of magnitude, the

expression Ao = - 1s too inaccurate as a first approximation.
6

One can then calculate %45 = uu5 t iwh5 with the ailid of the Vieta
relations, applied for (26). One has

A

) Ag
2u5 + Ng = -X; rh52)6 = ‘X; Wis = rh52 - u452 (27)

For N, Scharn!? indicated the approximate solution

A
7\]_ = Al + ie— - -2 (28)
A A

This approximation is perfectly sufficient if Rl is considered by
itself. However, since %l will be required again for calculation of

the other roots, it is advisable to correct kl by means of the Horner
scheme referred to (25).

Since all roots, except R25 = Uz + iw23, are known, one may employ,
for determination of Upsz; the Vieta relation for the entire frequency
equation (20)

MmN - N
2

Xl + 2u23 + 2u.u5 + )6 = -A1 u23 - Wy (29)

13see foothote 10 on p. 22.
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Furthermore, one has approximated according to the Vieta relations for
equation (25)

A comparison of the solutions calculated according to these approximate
formulas and according to Graffe's method showed, for a number of examples
for which the 1ift coefficient and the dihedral were varied, the following
errors of the approximate solution:

M Upz | Vo3 | Wys | Wu5 | Mg

Maximum error, percent | 0.04 | -3.7 | 1.2 | -19.2 | 2.9 | -h.2

Mean error, percent 02 | -2.9 | 1.1 | -16.6 | 1.7 | -1.k

The agreement is satisfactorily exact except for the error in the
excitation of the lateral displacement oscillation u45. For some

investigations these approximate solutions are, therefore, not sufficient.
One can considerably improve them by expanding for %6 Horner's scheme

by two stages of (20), and for A, by three stages (to include the entire
equation (20)). One may improve the values of the conjugate-complex pairs
of roots r452 = -Ag/Az); and r232 = -Aj/%1 by replacing Az by a
corrected KS for which the following relation is valid:

O.895A2A5
1
Az = Az - K-B-QxeAn - 0.9ThA5 - —7*5_— + 1.794145 (30)

This equation was derived from the Graffe method. The corrected A
is from 1 to 3.5 percent (on the average 1.5 percent) smaller than ‘A3.

The error still possible is now smaller than 0.2 percent. Finally, the
real parts of the two conjugate-complex pairs of roots are to be calcu-
lated with the aid of the Vieta relations for the entire frequency
equation (20).
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(v) Damping Times and Period of Oscillation
of the Lateral Motions

.The damping or excitatlion times and the period of oscillation of the
lateral motions result from the roots of the frequency equation in the
well-known manner. By damping time, we understand the time during which
the motion is damped to the 1/e-fold value. tW1 = -TF/7\l is the damping

time of the rolling motion, tW = F/u the damping time. of the
23 25

'2nTF/w25 the period .of oscillation of the

awing oscillation T
y g ) 1!;25

yawing oscillation, twh5 = 'TF/uAS the damping or excitation time of

the lateral displacement oscillation (> O indicates excitation time),

T¢u5 = 2“:F/w45 the period of oscillation of the lateral displacement
_oscillation. An important parameter for the judgment of an oscillation
is, furthermore, TW/tW = 2nu/w, the number of oscillations to damp to

the l/e-fold value.

(c) Desirable Stability Properties in Towed Flight

In order to facilitate the work of the pilot, it was desired to
obtain the following stability properties: 1. The lateral displacement
oscillation is to be damped or at least indifferent. 2. The period of
oscillation is to be as large as possible. 3. Static directional sta-
bility in towed flight is to be only small. As shown by the calculations,
a high static directional stability in towed flight is always combined
with a pronounced excitation of the lateral displacement oscillation.
Furthermore, a high static stability decreases the control effectiveness.
k. Finally, a maximum demping and maximum period of oscillation of the
yawing oscillation are desired, just like for an untowed airplane.

6. NUMERICAL CAICULATION OF THE DIRECTIONAL STABILITY

The directional instability in towed flight, in the shape of an
excited lateral displacement oscillation, appears in a particularly inten-

sive form in the case of the airplane Go 2l (fig. 6) with high wing
loading, selected for the calculation of examples. Furthermore, detailed

thith this model, the author was able to collect detailed flight
experiences for various climatic condltions and loading conditions. TFor
unfavorable conditions, for instance, with high pay load and at high
temperatures when the engine power fell off, or in the case of small
airfields where the pilot was forced to 1lift off the ground too early,
numerous false starts resulted which frequently led to failure of the
alrplane.
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six-component measurements15 exist for the Go 242, so that one may refer,
not only to estimated or approximate calculated values, but also to meas-~
ured values of aerodynamic force coefficients. The following calculations

were performed:l6 Starting from a theoretical coupling at the center of
gravity and an infinite length of cable, :we investigated the influence of
the position of the towing point and of the cable length on the origin of
the conjugate-complex palr of roots Ku5 -of the lateral displacement

oscillation and of the real root )6. Then the effects of the most

important parameters of the flight attitude and of several configuration
parameters on the directional stability were determined. Finally, the
stability regions for variable flight mechanical and configuration param-
eters vere determined with the aid of Routh's stability criteria.

(a) Influence of the Cable Length and of the Position of the Towing
Point on the Origin of the Lateral Displacement Oscillation
and on the Static Stability in Towed Flight

The approximate formulas for the roots offer a certain clue for
recognizing the influence of individual coefficients on certain roots.
A survey of the structure of the coefficients themselves is obtained
if oné breaks them down into the determining factors of table I.

An airplane towed with infinite cable length and the towing point
situated at the center of gravity, is distinguished from the untowed
airplane only by a variation of the spiral root %u which in towed

flight, due to the cable force, becomes negative and therefore stable.
The coefficlents A5 and A6 and the roots of the lateral displacement

oscillation are not yet in existence. If one lets the cable length
become finite (fig. 8), there newly originates the coefficient , and
from the root Ku a conjugate-complex pair of roots develops which

characterizes the lateral displacement oscillation. The oscillation
here is still damped. Therein 2u45 = %h, that is, the damping of the

oscillation is half as large as the real root for infinite cable length
from which the oscillation arises. The period of oscillation is infinite

15H. Gothert, Sechskomponentenmessungen an dem Windkanalmodell
Go 242, Unpublished report No. 82228 of the Luftfahrtforschungsantstalt
Braunschweig, 1943; F. W. Scholkemeier, Weitere Sechskomponentenmessungen
an dem Windkanalmodell Go 242, unpublished report No. 82239 of the Luft-
fahrtforschungsanstalt Braunschweig, 1943.

16The airplane data, parameters, coefficients, and roots of the
frequency equation compiled in the tables had to be omitted. Reference
is made to the dissertation of the author, Braunschweig 1947.
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for infinite cable length. In fact, it attains relatively large
values for. very large cable lengths, for instance, kg = 24, cable

length 1 = 290 m, period of oscillation is 123 sec.

If one then lets the towing point deviate from the center of gravity
horizontally up to the nose, one obtains the new coefficient Ag and the
static-stability root Ag which increases at first rapidly and then more
slowly (fig. 9). The excitation increases about proportionally to it.
The oscillation frequency grows in the same region to somewhat more than
double its value. If one lets the towing point deviate from the center
of gravity vertically up to the upper surface of the wing, Ag and g

will likewise originate (fig. 9). The excitation grows in proportion,
and the oscillation frequency increases; however - corresponding to the
smaller distances - not as much as in the case of the towing point
travelling toward the nose.

(b) Influence of the Cable Length, of the Flight Attitude,
and of Configuration Parameters on the
Stability in Towed Flight

1. Variation of the towing-cable lengthl7.— The relative cable

length was varied from 3 to 12, corresponding to an absolute cable
length 1 of 36.7m to l47m. The relative cable lengths exceeding

1TTransition to cable length 0: 1In the transition to a very short
towing cable, the cable angle ¢ may become very large also for very
small lateral-displacement and yawing oscillations. Then, however, the
approximation for o (5) is no longer correct. If, finally, 1 becomes
zero, a free yawing oscillation about the center of gravity of the towed
airplane is no longer possible. This case may be expressed by the two
differential equations of the rolling motion and of the motion about the
towing point on the towing airplane (coupled yawing and center-of-gravity
path motion). Similar to the case 1 = 0 1s the Fieseler rigid-bar tow
(H. Solf, Jahrbuch 1942 der deutschen Luftfahrtforschung, p. I 391 and
K. Petrikat and E. Pieruschka, Jahrbuch 1942 der deutschen Luftfahrtfor-
schung, p. I 4O4) and the three-point tow (W. Sdhne, Die Seitenstabilitit
eines geschleppten Flugzeuges. Der Dreiecksschlepp, Monography of the
M.0.S. Vilkenrode, 1946) where, due to the two cables acting, at a larger
distance, on the wing nose, a free yawing oscillation is no longer possi-
ble, either.
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these amounts kg = 24, 48, 96 have only a theoretical significance and
were investigated in order to observe the origin of the lateral displace-
ment oscillation. With increasing cable length, the demping in roll IS
and the yawing oscillation Uz iw25,.remainﬁalmostmpnghgngqg; excita-
tion and frequency of the lateral displacement oscillatlon s + iwh5
and static stability in towed flight g, in contrast, decrease (fig. 10).
An increase of the length of the cable as a means for obtaining better
stability, however, is advisable only up to a cable length of about

kg = 6 (76m). For reasons of practical flight operation, a short towline
is desirable. A cable length of kg =5 - 6 (60 - Tim) seems therefore
to be most favorable, . : .

2. Variation of the 1lift coefficient.- Here we calculated with six
different cg5 values from 0.303 to 1.0, in order to cover the entire

1ift range. The 1ift coefficients above 0.681 appear, in practical flight
operation, generally only in the unsteady accelerated flight after the
take-off. With increasing 1ift coefficient, the excitation uys and the

frequency W5 of the lateral displacement oscillation as well as the
static stabllity in towed flight Ny increase. The period of osgilla-

tion Twh slightly increases, up to the lift coefficient 0.6, and then
>

again decreases slightly whereas the excitation time tW decreases

considerably percentagewise (fig. 11). The pilot of the towed airplane

is forced to balance by control deflections the instability which
increases with increasing lift-coefficient values while simultaneously

the effectiveness of the control surfaces decreases in proportion

with the decreasing dynamic pressure. This is a difficult and very

tiring task, particularly in squally weather. It explains the high o
degree of dependence of the stability on the flight speed. The calcula-
tion therefore confirms the flight experience according to which a
directionally unstable airplane can no longer be controlled, above a
certain lift coefficient (for Go 242, for instance, cg > 0.8), in towed

flight, although it exhibits, for this 1ift coefficient, still very satis-
factory properties in untowed flight.

3. Variation of the flying weight.- Of the possible actual loading

conditions, we selected as examples the empty flying weight with trimming
ballast of 4,200 kg, the standard flying weight of 5,500 kg, and the full-
loading flying weight of 6,800 kg. With increasing flying weight, the
excitation and frequency of the lateral displacement oscillation and also
the static stability increase very considerably. TFor the excitation time
and period of oscillation as well as for the damping time of the static"
stability there results a slight decrease, due to the influence of the
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flight-mechanical time unit Ty (fig. 12)._ With increasing weight, the
cs values, however, increase; the control effectiveness, therefore

decreases. TFurthermore, the reserve power of the towed airplane decreases,
and the flight speed is therefore lower than in the case of smaller weight.
The impediments resulting from the increase in 1lift coefficient appear
therefore once more, in addition. The difficulties for the pilot in
balanéing the excitation increase, therefore, considerably more than is
expressed in the amounts of the excitation times and period of oscillation.

k. Variation of the angle of climb.- The angles of climb selected as

examples = 3.440 and 6.85° correspond, for G = 5,500 kg and
= 0. 681 to the climbing speeds 2.8 m/s and 5.6 m/s. With 1ncreas1ng

cllmblng speed, the excitation time of the lateral displacement oscilla-
tion and the static stability in towed flight decrease only slightly

(fig. 13). The frequency of the lateral displacement oscillation, in
contrast, increases considerably with increasing climbing angle, that is,
the period of oscillation decreases which is a phenomenon that is likewise
inconvenient for the pilot. Since climbing flight is, of course, always
combined with a lower flight speed, here again the phenomena of the
increasing excitation of the lateral displacement oscillation in low-speed
flight and of the decreasing period of oscillation in climbing flight are
additive. The calculation, therefore, confirms in this case, too, the
flight experiences which show precisely for climbing flight at low speed
the maximum instability and therewith the greatest difficulties in con-
trolling the airplane.

5. Variation of the rolling moment due to sideslip by variation in
dihedral.- The dihedral was varied from +6.7° to -5.3° whereby the rolling
moment due to sideslip changed from C1p = -0.26 to +0.09. With

decreasing dihedral, the excitation uh5 of the lateral displacement

oscillation decreases more and more, and after the zero point has been
passed, it turns into a rapidly increasing damping (figs. 14 and 15).

The frequency of the oscillation shows a minimum for excitation zero and
then increases again. The static stability decreases about proportionally
with the excitation of the lateral displacement oscillation and makes the
transition to the unstable region at approximately equal dlhedral. From
this remarkable dependence of the directional stability in towed flight
on the rolling moment due to sideslip, one may draw the following conclu-
sion: The optimum flight properties result in the case of coupling at

the nose for a rolling moment due to sideslip cZB = 0; for this moment

the excitation of the lateral displacement oscillation is very small,
the period of oscillation shows a maximum, and the static directional
stability in towed flight simultaneously has become zero. For a high-
wing monoplane, the rolling moment due to sideslip disappears at a
slightly negative dihedral (Go 242: v = -2.230). It is true that the
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airplane in untowed flight then shows a certain tendency toward spiral
dive which is, however, unimportant since the untowed flight always lasts
only a few minutes. The primary object of consideration for a towed air-
_ Plane always is towed flight.

6. Variation of the vertical-tail surface area.- The vertical-tail
surface area was increased from 2 X 3.85 to 2 X 5.59m2 in the manner
indicated in figure 6 whereby the lateral force due to sideslip, the yawing
moment due to sideslip, and the damping in yaw increased considerably. To
increase the vertical-tail surface area is a customary means for improving
the directional stability of an untowed airplane. In the case of the towed
airplane, there results likewise a large increase in damping, but - it is
true - also a slight increase in the frequency of the yawing oscillation.
The excitation and frequency of the lateral displacement oscillation, in
contrast, decrease only slightly (fig. 16); therefore excitation time and
period of oscillation show a slight increase. For this reason, an increase
in vertical-tail surface area would therefore hardly be a profitable means
for improvement of directional stability in towed flight. However, the
prilot has to balance the self-exciting lateral displacement oscillation by
suitable aileron and rudder operation. This will be easier the more
effective (and thus larger) these tail surfaces are. Thus, an increase
in vertical-tail surface area is, after all, wholly suitable for improving
the directional stability of a towed airplane.

T. Variation of the damping in roll.- In the. case of a variation of
the moment coefficient of the damping roll from 1, = 15.12 to 18.48 (as

may be caused, for instance, by a variation in the aspect ratio of the
wing from A = 8 to 13.1), the damping-in roll root Kl increases pro-

x* The

excitation and the frequency of the lateral displacement oscillation
decrease slightly, the excitation time and period of oscillation there-
fore slightly increase (fig. 17). According to the calculation, the
towing properties of an airplane with high damping in roll, that is, with
high aspect ratio, are therefore somewhat more favorable than those of an
airplane with low damping in roll, that is, low aspect ratio. On the
other side, there is, of course, the greater inertia with which an air-
plane with higher aspect ratio reacts to aileron deflectéons.

portionally to the moment coefficient of the damping-in-roll 1

8. Coupling at the lower side of the fuselage and variation in the
position of the towing point in horizontal direction.- Indifference of
the lateral displacement oscillation combined with static indifference
may be obtained without variations in the configuration of the airplane
when the towing point is placed on the lower side of the fuselage, ahead
~of the center of gravity. In the case of coupling vertically below the
center of gravity at the lower side of the fuselage, there results static
instability and a damped lateral displacement oscillation. If one then -
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lets the towing point travel forward to a position 0.90m ahead of the
~center of gravity, the root of the static stability N Ppasses into a

stable region. Simultaneously, the damped lateral displacement oscilla-
tion at this point becomes an excited oscillation (fig. 18) and the
oscillation frequency shows a minimum. By coupling below the center of
gravity, a tail-heavy moment is created which must be balanced by ele-
vator trimming. A coupling at the lower side of the fuselage 0.90m
ahead of the center of gravity seems, therefore, to be considerably more
favorable than the customary coupling at the nose.

(c) Stability Limits for Various Cable Lengths, Weights, and Lift
Coefficients Against the Rolling Moment Due to Sideslip

The variation of ¢35 for G = 5,500 kg, cg = 0.436, k, =6

resulted, in the case of coupling at the nose, in a special dependence
of static stability and of the excitation of the lateral displacement
oscillation on clB' It appeared therefore desirable to check this

result for other weights, cable lengths, and 1ift coefficients as well.
With the aid of Routh's stability criteria, we determined the stability
limits for dynamic and static stability for these variables against the
rolling moment due to sideslip. According to this, the limit of static
stability lies at lB = 0. For all weights the limit of static stability

varies, as the cable length is decreased from a very small negative value
to a somewhat larger positive value of IB. However, the difference is

so slight (approximately l/ho dihedral) that for all practical purposes,
one may state that in the case of variation of the dihedral, for cruising
flight cg = 0.436 +the limits of static and of dynamic stability coin-

cide at ZB = 0 1in such a manner that one can obtain either only static

stability and dynamic instability or vice versa, or static and dynamic
indifference. In contrast, a simultaneous variation of the lift coef-
ficient and of the dihedral (fig. 19) shows that below a lift coefficient
of ¢y = 0.42, a gradually widening region of static and dynamic stability

Tresults. Above Cy = 0.42, there is a region of simultaneous static and
dynamic instability.

7. SUMMARY

With the aid of the well-known directional-stability theoryl8 (for
untowed airplanes), the directional stability of an airplane towed by

18

See footnote 4 on p. 4 and footnote 11 on p. 22.
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means of a cable was theoretically investigated according to the method
of small oscillations, and the. frequency equation for it was derived.
Whereas the frequency equation of the directional stability of an untowed
airplane is an equation of the fourth degree, there results for the towed
‘airplane  an'equation of the sixth-degree. The damping-in-roll root N

and the pair of roots of the yawing oscillation *23 = u23 t iw23 of the

untowed airplane remain valid almost without modification whereas the
spiral root Ay, in contrast, disappears. In its place there appears a
new conjugete-complex pair of roots Kh5 = U5 t ivh5 which charac-

‘terizes the lateral displacement oscillation occurring in towed flight,
and a real root g which represents the static directional stability

in towed flight. The lateral displacement oscillation is generally

excited. The limit of dynamic stability may be determined by the Hurwitz-

Routh stability criteria. We investigated what discriminant is decisive
. for the stability limit of the lateral displacement oscillation, and
found that it was possible to simplify the corresponding expression con-

siderably. The investigation of special cases in which one or two degrees

of freedom (rolling and yawing oscillation) had been neglected did mot
yield usable approximate solutions.

Numerous examples were calculated for the airplane Go 242. For
coupling at the center of gravity, if one passes from infinite cable
length to a cable length which is finite, there originates a damped
osclllation from the real root Xh. If the towing point deviates from

the center of gravity in the horizontal direction forward or in the
vertical direction upward, this oscillation becomes an excited oscilla-
tion and its frequency increases. Simultaneously, there appears a real
root which represents the static stability in towed flight. Then various
parameters of flight attitude and configuration were varied. It was
found that in the present model the lateral displacement oscillation is
strongly excited. Its duration amounts to 19 to 32 seconds, according

to the cable length, thus to about the 7- to 10-fold multiple of the
yawing oscillations. The most noteworthy results of a variation of the
individual parameters are:

1. With increasing cable length, the frequency and excitation of the
lateral displacement oscillation decrease. However, it is not worth-
while to increase the cable length beyond kg =6 (1 = 76m).

2. With increasing 1lift coefficient, the excitation and frequency
of the lateral displacement oscillation increase.

5. The same occurs in the case of increasing pay load.

4, With increasing angle of climb, only the frequency of the lateral
displacement oscillation increases.
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These resﬁlts confirm the flight experiences and flight measurements
and explain many difficulties in towed flight and accidents that have

. occurred. They are probably similar for other model types with a high

wing loading.

5. In the case of variation of the dihedral, the excitation of the
lateral displacement oscillation reverts, for a vanishing rolling moment
due to sideslip (v = -2.239) to zero, the period of oscillation here
attains a maximum. Simultaneously, the static stability in towed flight
becomes equal to zero. With the aid of the Routh discriminant, the sta-
bility limits against the rolling moment due to sideslip were determined
also for other weights, cable lengths, and 1ift coefficients. There
resulted below c, = 0.42 a region of simultaneous static and dynamic

stability. For this structural design (nsmely lg = 0 to 0.2,

v = -2° to 2.30), the towing conditions are therefore the most favorable
ones. An absolute stability in towed flight in the sense that the air-
plane is controlled by the cable forces and moments in such a manner that

the pilot's work is made completely superfluorous is unattainable. For
ZB > 0 the lateral displacement oscillation is damped, but static insta-

bility exists whereas for ZB < -0.2 static stability exists, the lat-
eral displacement oscillation, however, is excited.

6. With increasing area of the vertical-tail surfaces, the frequency
and excitation of the lateral displacement oscillation decrease only
little; however, under certain circumstances such an increase may be
advisable for improvement of the control effectiveness.

7. An increase in the moment coefficient of damping in roll lx

yields a small decrease of excitation and frequency of the lateral dis-
placement oscillation.

8. In the case of coupling at the lower side of the fuselage 0.90m
ahead of the center of gravity, static and dynamic indifference msy like-
wise be attained without configuration changes in the airplane. This
position of the towing point seems therefore to be more favorable than

the customary coupling at the nose.

Translation by Mary L. Mahler
National Advisory Committee
for Aeronautics




TABLE I.- COEFFICIENTS OF THE STABILITY EQUATION, ARRANGED ACCORDING TO DETERMINING FACTORS WITH NUMERICAL

EXAMFLE FOR G = 5,500 kg; kg = 6; ¢, = 0.436

Ay Ahg Ay Ay . My
A= Ix + Bz + Cgg - Cq tan 7 Cy
18.70 0.037
= B, -l + c (1, + Bz)
Ay 3 z glix 2 - (l . %) c.L;l
(cqp - ca tan y)(1x + ng) + usng L
49.76 0.67 1.89 0.07
Ay = 7 (cqp - ca tan 7)(lxnz - nxlz) + eg{ixng - Dxlz) + ™ (1 + %) [ns(le + °akh‘(1x + 1z)
He |:1an - nglg - ca,(lg + ng tan 7)] cs“sns(l ¥ %) Cqp + o) - lsnx] -
280.6 1,54 32.7 1.78
Ay = iy : {c.[;lﬂlz - ign, - tan 7(.ang - Delp) Cg(l + %‘/(1)@5 - gny) (1 + :‘:‘)(“slx - Bylg){eqg + o) ‘E:(l*-“a + 1By - Dyly) :‘:'[("qp + cglng + °n1l)]}
k.97 9.52 15.45 2.92 - 1.75
.
A = g2 {c‘(l + %)(npl. - 1gm) -k:(z,n,, - nylp) kl—.[(cqp + 03)(Leng - nely) +
c.(nzl. - lln.ﬂ}
21.08 8.09 8T
3 :
Ag = “'3 {:‘(1 + %)('t.na - n.lp)}
40.0

A, = coefficients for the untowed airplane

By = -ddd.tionnl term, stemming from the cable force, for towing point at the center of gravity, but independent of the cable length
Ahyp = additicnal term, stemming from the cable moments, but independent of the cable length19

&A; = sdditional term, stemming from the cable force at the center of gravity due to finite cable length

&My = additional term, stemming from cable moments due to finite cable length

1910 the case of coupling at the nose, for cu = 0.56, the towing point lies at the same beight as the center of gravity. Hence,
he and 15 = 0. For other angles of attack, too, 1y remains small compared to ng, and was neglected for the sake of simplification
of the calculation. -

TOHWT WL VOVN
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Figure 1.- Coordinate systems of the towed airplane. (The NACA
reviewer suggests that the angle between the towline and x in
the xy-plane should be labeled ¢ - xcos 7 -B.)

Figure 2.- Forces, moments, and motions of directional stability.
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Figure 3.~ Excited lateral displacement oscillation of a towéd airplane
at a flight speed of 206 km/h and a cable length of 80 m. Towing
airplane He 111, freight glider Go 242. Period of oscillation
~ 32 sec.
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Figure 4.- Cable forces and angles on the towed airplane. KP
coupling point on the towing airplane; SP center of gravity of
the towed airplane; FP towing point on the towed airplane.
(The NACA reviewer suggests that the labels X, Ry cable,

a
Ry cable should possibly be Ry , 8, , and S_, respectively.)
a’ Ya y
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Figure 5,- Coordinates of the towing point on the towed airplane,
h > 0 towing point abové the center of gravity; a > 0 towing point
ahead of the center of gravity (in the figure above, h is negative).
he =hcosa+asin «,a, =acos a-hsina.
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Figure 6.- General view of the freight glider Go 242,
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Figure 7.- DPolar of the freight glider Go 242.
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Figure 8.- Origination of the roots of the lateral displacement oscil-
lation for change of the cable length from infinity and for coupling
at the center of gravity. G = 5500 kg, cg = 0.436.
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Figure 9.- Roots of the lateral displacement oscillation ugg iwgs and
of the static stability 7‘6 for variations in the position of the towmg

point (1) in horizontal direction from the center of gravity toward
the nose of the fuselage, and (2) in vertical direction from the center
of gravity toward the wing nose.
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Figure 10.- Period of oscillation Ty and excitation time ty of
45 45
the lateral displacement oscillation and damping time of the static

stability t, inthe case of variation of the cable length. G = 5500 kg,
6

cg = 0.436.
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Figure 11.- Period of oscillation T‘l, and excitation time t v of
45 45
the lateral displacement oscillation and damping time of the static
stability tw in the case of variation of the lift coefficient.
6
G = 5500 kg, kg = 6.



46 g NACA TM 1401

—

32
seC
kmo/h
17
28 T ——
/———_210—-\\
e 240
"] \'}T\p45
24
20
16 \240\
\\\2‘0\\
L R
12 — 45 |
8 - 70
‘210 \240 } '\Ife
4
o) —
4200 5500 6800 kg

Flying weight
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speeds. kg = 6.



" NACA T 1401 b7

32
- S€C

28

24 AN

16
12
t
Y5
8
t
Ye
4
tan y
0 0.06 o1z o
L A — 1 l
O 7 34¢° 6,85°

Angle of climb

Figure 13.- Period of oscillation and excitation time of the lateral
displacement oscillation and damping time of the static stability
in the case of variation of the climbing angle. G = 5500 kg,

c, = 0.681, kg =6.
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Figure 15.~ Period of oscillation and excitation time of the lateral
displacement oscillation and damping time of the static stability
" in the case of variation of the dihedral. G = 5500 kg, cg = 0.436,

ks=6-



50

Figure 16.-

32 T
sec
/
/
/ T.
28 v
45
24 '
5
‘0
8 1
20— _
[ =]
5
g
-.(f—) 1
16 ——
_4—-/
t
| Yas
12
8
' tqle
4
0
7 8 9 {0 Hm2

Area of vertical tail surfaces

NACA -‘TM 1401

Period of oscillation and excitation time of the lateral
displacement oscillation and damping time of the static stability
in the case of variation of the vertical-tail-surface area. G = 5500 kg,
Cy = 0.436.
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Figure 17.- Period of oscillation and excitation time of the lateral
displacement oscillation and damping time of the static stability

in the case of variation in damping in roll. G = 5500 kg, c, = 0.4386.
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Figure 18.~ Roots of the lateral displacement oscillation Uy, tTiw 45
and of the static stability Ag in the case of forward deviation of

the towing point at the lower side of the fuselage. a = horizontal
component of the distance from towing point to the center of
gravity.
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